Review of Last Week

• Problem: Externalities
 – If you don’t pay all the cost or receive all the benefit
 – Of your acts, you will sometimes
 • Do things that reduce efficiency, or
 • Fail to do things that increase it

• Solution: Pigou.
• Critique: Coase
 – Costs and benefits depend on decisions by two or more people
 • So problem is not “I impose costs on you” but
 • We act in ways that don’t maximize our combined benefit
 – Pigou’s solution requires you to know
 • Who should alter what he is doing
 • And that only one person should
 – Alternative (Coasian) approach
 • Define who has a right to do what
 • Then let the parties bargain from there
 • If transaction costs are low enough, they will always get to an efficient result
 • Wherever they start
 • Implications for the law
 – Try to find initial definitions of rights that, averaged over many cases
 – Minimize the costs of getting to the efficient outcome
 – Plus the costs of failing to do so
 – Worked out in agonizing detail for our simple example

Attempts

• Law against attempts a version of ex ante:
 – $10,000 fine for successful offense
 – $5,000 for unsuccessful attempt
 – i.e. $5,000 ex ante for attempting, $5,000 ex post for succeeding.

• Impossible attempts
 – Law specifying what is impossible is a special case of causal link disagreement, makes sense if that level of detail is communicated
 – Law specifying that impossible doesn’t get punished reduces incentive not to try to kill someone.
 – Because you don’t know if the means you plan to use can actually work

Game Theory

• Strategic behavior
 – The problem—other people
 – How do I choose my actions when they are choosing theirs
 – Based in part on what I am doing
 – And the outcome depends on what both of us do

• Not just table games but …
 – Game between attorneys in litigation
 – Between Saddam Hussein and Bush
 – Between parents and children
 – Bargaining over the price of an apple—or anything else

How Economics Avoids It

• Wherever possible, define the problem
 – In a way that eliminates strategic behavior
 – Converts it into a maximization problem
 – Against a fixed environment

• Examples include
 – Perfect competition: Everyone too small to matter
 – Monopoly
 • One player, the monopolist
 • Everyone else responds
 • Without trying to change what the monopolist is doing
 • Because we assume many small customers

• But when all else fails …
Game Theory

- There is a large body of mathematical theory that attempts to
 - Create ways of precisely describing games
 - Create a clear definition of the solution to a game
 - Show how to find it.
- What would the solution to a game mean?
 - A description of how every player
 - Should? Will? Play
 - Typically assuming he plays perfectly
 - Thus chess is a simple and solved game
 - Given infinite computing power
- How can one describe a game?
 - In a sufficiently general way to work
 - For all games

Strategy Matrix: Example

- Scissors/Paper/Stone
- The rules
 - Scissors cut paper
 - Stone breaks scissors
 - Paper covers stone
- Payoff
 - Loser pays winner a dollar
 - No payment in case of tie
- Description: Matrix of strategies and outcomes

Strategy Matrix

- Each player chooses a strategy
 - Player 1 picks a column
 - Player 2 picks a row
- The intersection shows the payoffs to the two players
- What is their sum?

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Scissors</th>
<th>Paper</th>
<th>Stone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scissors</td>
<td>0</td>
<td>(-1,1)</td>
<td>(1,-1)</td>
</tr>
<tr>
<td>Paper</td>
<td>(1,-1)</td>
<td>0</td>
<td>(-1,1)</td>
</tr>
<tr>
<td>Stone</td>
<td>(-1,1)</td>
<td>(1,-1)</td>
<td>0</td>
</tr>
</tbody>
</table>
Von Neumann solution to a two person zero sum game

- A strategy is a full description of what a player will do in every situation
- Von Neumann proved that for any zero sum two person game
 - There exists a pair of strategies, one for each player
 - If Player 1 plays his strategy, he on average wins at least V
 - And if Player 2 plays his strategy, he loses at most V
- Doesn't include stealing candy from babies.
 - I.e. strategies that do better than V, because
 - They rely on the other player playing badly

What is the VN Solution to Scissors, Paper, Stone?

- If my strategy is paper
 - Scissors always beats it
 - Similarly for each of the others
 - So how can there be a strategy for me
 - So how can there be a strategy for me?
 - That guarantees an outcome better than -1
 - For any strategy of yours
 - And similarly for you?
- Need a mixed strategy. Mine is …
 - Roll a die (where you can't see it)
 - 1,2: Scissors 3,4: Paper 5,6: Stone
 - On average I break even whatever your strategy
 - You follow the same strategy, so …
 - The value of the game is zero for each of us
 - The Von Neumann solution to one very simple game

No Satisfactory Solutions Beyond that?

- Non-fixed sum games
 - Mean that some outcomes
 - Hurt both players
 - Or help both players
 - Making possible threats, bluffs, bargains
 - No threats in a fixed sum game, since
 - If something I can do hurts you it helps me
 - So I would do it anyway
- Multiple player games
 - Bring in coalitions, bargaining
 - Variable sum for the coalition even if fixed sum for all players combined
 - Since we may be able to benefit ourselves at the expense of other players

A number of solution concepts exist

- VN Solution to many player game
 - A set of outcomes such that
 - Any outcome not in the set is dominated by one in the set
 - And no outcome in the set dominates another
 - Where “A dominates B” means
 - A is preferred to B by all the members of a group who
 - Working together could make it happen
 - Three person majority vote: Divide a dollar
 - (1,1,0),(1,0,1),(0,1,1) is a VN solution. But …
 - There are others, some of which
 - Contain an infinite number of outcomes.
- The Core
 - The set of outcomes that no other outcome dominates
 - There may not be any (empty core)
- Nash equilibrium
 - Each player chooses the correct strategy
 - Given what every other player is doing
Nash Equilibrium

- Assumes no coalitions
 - Gang of convicts escaping death row
 - One guard with one bullet
 - Surrender is the only Nash equilibrium
 - But if two convicts charge ...
- Assumes “My strategy given what they are doing”
 - Is well defined
 - But consider a firm in an industry with only a few firms
 - Is each firm’s strategy defined as the price it charges
 - Or the quantity it produces
 - Matters when defining what it means for the other firms to keep the same strategy while you choose yours.

Subgame perfect equilibrium

- For sequential games
 - View game as a tree diagram
 - Look at the last decision
 - See what the person making it would do
 - Cut off the other branch
 - Move down the tree accordingly
- Consider the “put to bed” game
 - If the child will make good his threat to throw a tantrum and spoil the parents’ dinner party
 - The parent should give in, let the child stay up, but …
 - If the parent doesn’t give in
 - It isn’t in the child’s interest to throw a tantrum
 - So parent knows child won’t throw a tantrum, can put child to bed?
- Not so clear when it is a repeated game
 - And it is
 - Commitment strategies—for both players

More Games we will Discuss

- **Bilateral Monopoly**
 - I have the only apple, only you want it
 - Selling it to you produces a one dollar gain
 - If we can agree on a price
- **Prisoner’s Dilemma**
 - My confessing helps me a little, hurts you a lot
 - Your confessing ditto for me, so ..
 - We both confess
 - And are both worse off than if we both stayed silent
Bilateral Monopoly
- A very simple two player non-fixed sum game
 - Hence threats, bargains, bluffs possible
 - "I won’t give you more than $.25"
 - "I won’t take less than $.75"
 - May lead to bargaining breakdown
 - i.e. child does throw a tantrum. Or apple isn’t sold
- Commitment strategy is one way to “win”
- Doomsday Machine as one example
- Hawk/Dove (or Bully/Wimp) a human version
 - The more bullies, the less profitable the strategy
 - In equilibrium, there are just enough bullies to make “Bully” and “Wimp” equally attractive strategies
 - The higher the cost of a bully/bully fight, the fewer bullies it takes to get to equilibrium, hence …
 - “Crimes of passion” may be deterrable!

Bargaining Costs
- Consider bilateral monopoly bargaining as a form of rent seeking
 - I am spending resources trying to get myself a larger share of the gain
 - And you a smaller share
- The more is at stake, the more it is worth spending
 - Setting up commitment strategies
 - Risking expensive bargaining breakdown, in the hope
 - Of getting more if you win
 - Consider the litigation/settlement game
 - In a Coasian world, I sue you for $10,000,000
 - All that happens is that we settle out of court, and
 - One of us ends up richer, one poorer
 - In our world, between us we might spend $5,000,000 on legal costs

Flip Side: The Economics of Virtue
- Why are there people who won’t steal even if they can get away with it?
 - Being known to be such a person
 - Makes you a more valuable partner in voluntary associations, such as
 - Employment
 - Renting
 - Marriage
 - Giving you more than you lose from not stealing
 - Provided people are not natural con men
 - Meaning it's hard to appear honest by nature
 - If you aren’t
- Equilibrium level of virtue
 - The fewer dishonest people, the less the incentive to take precautions
 - Hence the easier to be a successful con man
 - So some equilibrium level of virtue, at which
 - Virtue and vice yield the same reward

Prisoner’s Dilemma
- Two criminals arrested. D.A. tells each
 - Confess, other doesn’t, 1 month
 - Both confess, 1 year
 - Don’t, other does, 2 years
 - Neither, 3 months for disturbing the peace
- It pays each to confess (work it out)
- Simple example of individual rationality vs group rationality
- What about a repeated game?
 - If the number of plays is known, it still works
 - Because it pays to betray on the last play, and
 - Unravels from there
Plea Bargaining

- Does it reduce penalties?
 - Unless the bargain is a better deal than going to trial
 - Why would the defendant accept it?
- Every offered bargain accepted
 - Frees up prosecutorial resources
 - Making conviction more likely for those who don't cop a plea
 - And thus making defendants more willing to accept offered deals
- Each defendant is better off copping a plea, but
 - All defendants might be better off
 - If all of them insisted on going to trial
 - A real world prisoner's dilemma

Implications of Game Theory

- Not rigorous - real world doesn't come with rules, but …
- Suggests the importance of
 - avoiding games with PD structure, or …
 - Getting other people into them
 - For example, getting an army to run away
 - By arranging things so that each soldier
 - Is better off running than standing.
- Suggests the importance of commitment strategies
- Suggests bargaining costs associated with surplus to be divided up.
 - So avoid legal rules with very large bargaining range
 - Such as injunction where the damage is much less than cost of prevention.
 - Compare bargaining cost to litigation cost over damage.
- So gives us a partial handle on transaction costs.

Game Theory Review

- Basic idea: Strategic behavior
- Formal treatments:
 - Von Neumann solution to 2 person fixed game
 - VN solution to many player game
 - The Core
 - Nash Equilibrium
 - Define
 - Swedish switch
 - Escaping prisoners
 - Subgame Perfect Equilibrium
 - None entirely satisfactory

But Helps Us Understand Things

- Bilateral Monopoly
 - Commitment strategies
 - Cost of bargaining
 - And of breakdown
 - Probably scales with amount at stake
 - Commitment leads to a hawk/dove equilibrium
 - Which is a Nash Equilibrium
- Prisoner's Dilemma
 - Shows how individual rationality can fail to produce group rationality
 - Army running away as another example
 - Or traffic jam
- Subgame Perfect Equilibrium
 - Shows how rational people will act
 - In a sequential game
 - Where there are no commitment strategies possible.
Value of Life Matters

- Tort law—damages for tortious loss of life
 - How are they calculated in the law?
 - How should they be?
- Criminal law
 - damage done is relevant to punishment, standard of proof, etc.
 - And some crimes kill people
- Regulation
 - In deciding how safe highways or cars should be
 - How much we should be willing to give up to reduce pollution
 - When new drugs should be allowed on the market
 - One of the relevant costs is measured in lives
 - And must be converted to something else to compare costs to benefits
- Your private decisions
 - How fast to drive
 - What car to own
 - How often see the doctor
 - Whether to give up sky diving

Is life infinitely valuable?

- Judged by private decisions, clearly not
 - We routinely do things that risk death--a little
 - In exchange for other values
- But if someone wants to buy your heart?
 - Turning down his offer shows …
 - Not that your life is infinitely valuable to you
 - But that money is useless to a corpse
 - And people do sometimes accept a near certainty of death, for a benefit to other people they value
- An extreme example of our problem of measuring by dollars
 - Dollars are worth less to rich than poor
 - And much less to dead than alive
 - Making “how many dollars would you give for it”
 - A poor measure of utility
 - In extreme cases
 - Get around the problem by thinking in terms of risks
 - Which is the right answer since
 - Money saved will go to you when alive
 - Or to other people, who are alive to spend it, if you die

Measuring the value of life

- Observe choices people actually make
 - When trading off risk of death
 - Against other values
 - To measure the value of their life to them
- Job premiums in risky professions
 - Assumes those choosing are well informed, and …
 - Ignores the fact that it is a biased sample
 - The people taking those jobs
 - Tend to be the ones with low values for their life
 - So perhaps that gives a lower bound
 - Snow Crash
 - The protagonist is delivering pizza--for the Mafia
 - Which is why he is doing it
 - In that world, pizza delivery is not a boring job
- Willingness to pay for
 - Medical checkups
 - Safer cars…
- Typical estimates are a few million dollars.

Value of life in Tort Law

- Old rule: value of life was zero
 - Because the tort claim for damages was yours
 - And died with you
- Newer rule: Value of your life to other people
 - Loss of your value as a wage earner for your family
 - Loss of consortium
 - So if you have no family or close friends
 - Your life is worthless?
- Hedonic damages: Still pretty academic
 - You have lost the value of the pleasure of the rest of your life
 - That is a cost someone else imposed on you
 - And along Pigouvian lines, even if you can no longer be compensated
 - He can still be charged, to give him the right incentive
Incentives vs Insurance

- Tort damages can be seen both as
 - Compensation for the victim
 - Punishment for the tortfeasor
 - But the optimal values of the two are different

- Consider the loner
 - Why waste his money on life insurance?
 - So if damages are to provide optimal compensation
 - Current law is correct, and his life is worthless
 - Yet he still values his life
 - So we want to give people an incentive not to kill him
 - Which means treating his life as of value

Total utility vs marginal utility

- Losing my eyesight or being crippled
 - Creates new costs—wheelchair, guide dog
 - Lowers my utility even if those are paid
 - May also lower my ability to turn additional dollars into additional utility
 - Because many of the things I used to use money for
 - I can no longer do

- So getting total utility to its old level
 - Even if it is possible
 - Means marginal utility much below its old level
 - So insuring for enough to do that would shift dollars
 - From states of the world where they were more valuable to me
 - To one where they were less
 - So I wouldn’t do it

- The loner losing his life is an extreme example

Tort Damages as Insurance

- “Make the victim whole”
 - Is the right rule for insuring my house, moral hazard aside
 - But the wrong rule for insuring my life, or even my eyes
 - And still wrong even if it is possible

- Optimal insurance
 - Shifts dollars from states of the world where I am rich
 - To ones where I am poor
 - Up to the point where the gain to me from shifting one more dollar
 - Just balances the loss

- If my house burns down
 - Fully compensating me brings me back to my old income
 - Hence the same marginal utility for the last dollar
 - In both states of the world

- What if I get blinded or crippled? Or killed?

Trying to do two things at once

- The right level of insurance
 - Gets marginal utility of income equal
 - Between state of the world where you are not injured
 - And where you are
 - Zero insurance for the loner

- The right level of damages paid
 - Gets your utility ex ante equal
 - Whether the risk is imposed or isn’t
 - Thus charges the potential tortfeasor for the cost he imposes
 - Giving him the right incentive
 - Much more than zero for the loner

- We can’t use tort damages to do both
Tort + Insurance

- Tort is poor insurance anyway
 - Because you want to be insured
 - Whether or not your loss is the fault of someone else
 - And whether or not he has the money to pay
- So use tort damages for the disincentive
 - If you want more insurance than that, buy it
 - But what if you want less?
 - Consider again the loner—do we bury him with the money?
- Let people sell insurance on their lives?
- Let them sell inchoate tort claims
 - “If I am tortiously killed, you get to sue for the value of my life to me”
 - In exchange, you pay me now the expected return from doing so.

Summary

- If we want people to have the correct incentive in imposing risks on others
- The same as in imposing risks on themselves
- Make them liable for the ex post damages
 - Where value of life is calculated as
 - A thousand times what you would accept
 - For a one in a thousand chance of death
- And make damage claims marketable.
- That provides full ex ante compensation
 - My act has a one in a thousand chance of killing you
 - And you can sell your future claim for 1/1000
 - Times the value of your life to you
- Proper disincentive
 - I will only impose the risk if doing so saves me more than it costs you
- And lets people adjust what they actually receive if killed, crippled, etc.
 - On the insurance market
 - In either direction